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Internal Representations of the Motor Apparatus: Implications From
Generalization in Visuomotor Learning

Hiroshi Imamizu, Yoji Uno, and Mitsuo Kawato
ATR Human Information Processing Research Laboratories

Recent computational studies have proposed that the motor system acquires internal models
of kinematic transformations, dynamic transformations, or both by learning. Computation-
ally, internal models can be characterized by 2 extreme representations: structured and tabular
(C. G. Atkeson, 1989). Tabular models do not need prior knowledge about the structure of the
motor apparatus, but they lack the capability to generalize learned movements. Structured
models, on the other hand, can generalize learned movements, but they require an analytical
description of the motor apparatus. In investigating humans’ capacity to generalize kinematic
transformations, we examined which type of representation humans” motor system might use.
Results suggest that internal representations are nonstructured and nontabular. Findings may
be due to a neural network model with a medium number of neurons and synapses.

The process whereby experience in one activity leads to
improved performance in another is referred to as general-
ization. For example, it takes a long time for a beginner in
table tennis to learn how to return the ball precisely to the
corner of one side of the opposite court. However, after this
skill is learned successfully, less time is needed to return the
ball to any spot on the other side. Human motor learning is
characterized by its great generalization ability, in which the
experience gained for a particular posture or movement can
improve a subsequent posture or movement. In this re-
search, we studied generalization ability in visuomotor
learning (i.e., learning an aiming task under kinematically
transformed visual feedback) to understand how the internal
model of kinematic transformations is represented in the
human central nervous system (CNS).

Internal Models of Motor Apparatus

For an individual to grasp a cup placed in front of him or
her, the CNS must solve several problems. First, it must
select the best trajectory, out of an infinite number of
possible trajectories, from the hand to the cup. These tra-
jectories are thought to be planned in visuospatial coordi-
nates because, under normal circumstances, information
about the position of the cup is obtained visually. Second,
visuospatial coordinates of the desired trajectory must be
converted into arm—joint angles. This transformation is
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called inverse kinematics in robotics. Accordingly, the task
to choose the appropriate joint angles given a desired hand
position is called an inverse kinematics problem. Third,
motor commands must be generated to coordinate the ac-
tivities of many muscles so that the desired trajectory is
realized. To drive the limb along the desired trajectory, the
appropriate torque must be fed to the joint. The transforma-
tion from a desired pattern of motion to actuator commands
is referred to as inverse dynamics. Thus, at least three major
problems must be resolved: trajectory planning, inverse
kinematics, and inverse dynamics (Hollerbach, 1982; Ka-
wato, Furukawa, & Suzuki, 1987; Saltzman, 1979, 1987).
How does the human motor control system solve these
problems so quickly? There are two general strategies for
controlling the motor apparatus: feedback control and feed-
forward control. For example, although a line is carefully
being traced with a pencil, the CNS continuously uses
proprioceptive feedback from the limbs and visual feedback
of the hand position. However, movements cannot be rapid
and smooth by feedback control because there are substan-
tial delays in the feedback loop (about 200 ms for visual
feedback and 100 ms for proprioceptive feedback; Keele,
1981). For fast arm movements in the range of 500—600 ms,
these loop delays are too long to serve the role of an
efficient feedback controller (Hollerbach, 1982). According
to some computational theories of motor control, feedfor-
ward control is assumed to be achieved by building and
refining internal models of kinematic transformations, dy-
namic transformations, or both (Atkeson, 1989; Kawato &
Gomi, 1992). Once the internal models are acquired, feed-
forward control can be executed, and a rapid smooth motion
satisfying the aforementioned goal can be generated.
Apart from the context of modern robotics and neural
networks, two approaches to motor skill representation have
been proposed by psychologists. One is the schema abstrac-
tion model and the other is the specific exemplar model
(Koh & Meyer, 1991). Schmidt (1975) proposed the schema
theory of sensorimotor learning, in which four kinds of
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information are available after a movement: the movement
outcome, the response specification, the initial conditions,
and the proprioceptive signal. Sensorimotor learning in-
volves changing a “recall schema” in such a way that the
movement outcome and initial conditions can be used in
future trials to retrieve the corresponding response specifi-
cations. The basic idea behind this model is that a central
tendency (the prototype) is abstracted from the experience
gained with a number of examples for a specific category.
On the other hand, the exemplar model maintains that
specific exemplars are stored in memory. It determines the
output signal for a novel exemplar calculating the distance
between the novel exemplar and a stored exemplar (e.g.,
Chamberlin & Magill, 1992).

Methods for Representing Internal Models

Many researchers of robotics or neural networks have
proposed methods to implement inverse kinematics models,
inverse dynamics models, or both. Among them, two ex-
treme approaches have been proposed (Atkeson, 1989;
Hollerbach, 1982). One approach is to build an idealized
physical model of the structure of the motor apparatus by
estimating physical parameters. The basic ideas behind this
model are common to that of the schema theory in that the
central tendency is abstracted from a number of examples
and that what is learned is not some particular movement
but the capacity to generalize (Schmidt, 1988). The other
approach is to construct a tabular representation with no
analytical description of the motor apparatus. On the basis
of a thorough review by Atkeson (1989), we briefly explain
the differences between these two approaches. Of course, it
is impossible to classify all methods into these two extreme
groups, and several “hybrid,” or “intermediate,” approaches
have been proposed. Among them, some recent approaches
using multilayer feedforward neural network models have
greatly broadened the range of possible representations of
transformations such as kinematic and dynamic transforma-
tions (e.g., Jordan, 1990; Kawato, 1990).

Structured Representation

In a reaching movement, the CNS has to transform visual
information regarding the target position into a motor com-
mand to move the hand to the target. To illustrate this
transformation, suppose that human participants move a
cursor on a cathode ray tube (CRT) screen using a computer
mouse (see Figure 1). The kinematic transformation com-
prises two successive transformations in this case: from
CRT coordinates to hand coordinates and from hand coor-
dinates to joint coordinates. The CRT and hand coordinates
are Cartesian, and the first transformation can be repre-

sented as

x\ cos a sin a -1 X—bl

y] | — sinacosa Y—b, @)
where the target position is denoted by (X, Y) in the CRT
coordinates and by (x, y) in the hand coordinates. a is the
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Figure 1. When we move the cursor on a CRT screen using a
computer mouse, the kinematics transformation comprises two
successive transformations: from CRT coordinates to hand coor-
dinates and from hand coordinates to joint coordinates.

rotation angle and (b,, b,) is the translation distance be-
tween the two Cartesian coordinates.

Suppose the arm is composed of two rigid links of length
1, and L,. The links rotate about vertical parallel axes that are
fixed with respect to the links. The shoulder joint has a
single degree of freedom measured by angle 6; and the
elbow joint has a single degree of freedom measured by
angle 6,. The second transformation for this model can be
represented as

L+yY-L-0
201,

0, = arccos(

L, sin(6,) ) @

y
6, = t -1 - t i S—
1 arcl an(x> arc an( 11 n 12 cos (92)

Using these equations, the CRT coordinates of the target
position (X, ¥) can be converted into terms of the arm—joint
angles (6;, 6,). Thus, the kinematics are represented by
Equations 1 and 2.

These equations include several physical parameters (i.e.,
a, by, by, 1}, and 1,). The representation of a transformation
requiring real physical parameters is referred to as a struc-
tured representation or an idealized physical model. Unfor-
tunately, these equations are useless by themselves for con-
trolling the arm unless the physical parameters are
estimated. Thus, the problem of building kinematic and
dynamic transformations by using structured representa-
tions is how to estimate the parameters of each transforma-
tion and the motor apparatus. In the idealized case, only five
parameters need to be estimated. For a practical manipulator
control problem, however, the parameter estimation proce-
dures are often complex because of the large number of
parameters and the nonlinearity of the problem. Concerning
the inverse dynamics transformation, An, Atkeson and
Hollerbach (1988) devised a method to estimate the inertial
terms in the equations representing the inverse dynamics of
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a robot arm. They showed that their method can do estima-
tion in only a small number of trials. The advantage of
structured representation is that if the parameters are esti-
mated correctly and the underlying model structure is cor-
rect, the model will be correct for all other trajectories.
Thus, the generalization becomes global because the struc-
tured representations support the mappings between the
input and output signals in the whole work space.

Tabular Representation

In the simplest version of a tabular representation, a
kinematic transformation can be solved by constructing a
table that represents the mappings between the input (e.g.,
desired position of the hand in the CRT coordinates) and
output (e.g., arm—joint angles) signals. This tabular repre-
sentation does not need prior knowledge about the structure
of the motor apparatus. It computes the transformation by
referring to the table rather than by solving analytic prob-
lems. Accordingly, it can avoid computational delays during
real-time control. However, problems arise when simple
tabular representations are applied to complex systems be-
cause the size of the table grows exponentially with the
number of input variables. When the number of input vari-
ables is n and each variable takes m different values, m"
entries are required in the table. Another problem of tabular
representations is their inability to generalize learned move-
ments. Because the mappings between the input and output
signals are independently determined, the experience gained
for a particular posture or trajectory cannot improve the
ability to attain a different posture or trajectory. Instead,
generalization is restricted to a local area where a similar
input leads to a similar output.

Albus (1975) proposed a more sophisticated tabular or-
ganization to represent the internal models of inverse kine-
matics and dynamics transformations: the cerebellar model
articulation controller. In this model, a table entry is repre-
sented in a distributed fashion by a group of weights. The
table size is reduced as a result of the distributed memory.
The weights in the table are updated on the basis of ob-
served input—output pairs. Because the neighboring entries
of the table share common weights, the local generalization
of learned movements is possible.

Connectionist Representation

This approach is inspired by the architecture of the ner-
vous system. In this approach, the mappings between the
input and output signals are achieved by a set of nonlinear
computational units that have neuronlike functions (Rumel-
hart, 1986). This model does not directly represent mathe-
matical formulae like Equations 1 and 2, but the kinematics
parameters are implicitly represented by synaptic weights
(w; ... w,). Thus, the inverse kinematics can be represented
as

01 =f(w; - w, X.Y)
92 = g(W1 e WmX’Y) (3)
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The functional forms of f and g depend on the precise
architecture of the connectionist (neural network) model,
such as whether it is a simple perceptron, a multilayer
perceptron, a modular-network architecture, or a Boltzman
machine. Although this approach uses parameters (synaptic
weights), these parameters do not correspond to physical
parameters. On this point, the connectionist representation
is different from the structured representation, and it is
sometimes called a “black box model.” Furthermore, this
approach is nontabular because it is not implemented by the
local association between input and output signals. Some
recent approaches have proposed modeling of kinematic
and dynamic transformations using a connectionist repre-
sentation (Jordan, 1990; Kawato, 1990).

Logic for Revealing Internal Representation From
Different Generalizations

Suppose that people first learn to aim at a particular target
in their work space and that after intensive training they are
tested on their ability to aim at near and far targets in
various locations. The logic for revealing the internal rep-
resentation of the kinematic transformation is as follows:
On the one hand, if the type of representation the human
motor system uses is tabular, the effect of learning should be
observed only on aiming at targets near the location of the
target in the training session (local generalization). On the
other hand, if the human motor system uses structured
representations, the effect of learning should be observed on
aiming at various targets regardless of the location of the
target used in the training session (global generalization).
Accordingly, researchers should be able to identify the type
of representation by investigating the aiming behavior of
human participants at various target locations before and
after intensive training in aiming at a specific location.

The logic described earlier assumes the simplest cases in
which the internal representation type is extremely struc-
tured or tabular. If the type is not so extreme or if it is a
connectionist representation, intermediate generalizations
should be observed.

Research Goals

It is difficult to examine the effect of learning by studying
the performance of human participants under normal con-
ditions because they have already been intensively trained
in daily life in aiming at various locations in their work
space. For this reason, we kinematically transformed visual
feedback and asked participants to learn an aiming task
under this condition. In this experiment, we studied the
representation used in an internal model of kinematic trans-
formation. Although it might be possible to investigate the
representation used for a dynamic model using similar
methods, our research did not focus on dynamics.

Shadmehr and Mussa-Ivaldi (1994) investigated the gen-
eralization of motor learning in a novel dynamical environ-
ment. Participants made reaching movements while holding
the end-effector of a manipulandum. The experimenter
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modified the dynamic properties (force field) of the ma-
nipulandum by controlling servomotors attached to it and
trained the respondents in this transformed condition. There
were two work spaces (i.e., right and left) in their experi-
ment. The participants were trained in the right work space
and tested in the left work space. It was found that the effect
of learning was present in the left work space beyond the
boundary of the trained region.

Our transformation of visual feedback followed that of
Cunningham (1989). She used an aiming task under rota-
tional visual feedback of various angles ranging from 0° to
180° and found that the aiming task was relatively easy
when the rotations were 0° and 180° and more difficult
when the rotations were between 90° and 120°. The diffi-
culty of the task increased from 0° to 90° and decreased
from 120° to 180°. Our pilot observations suggest that 75°
rotations are relatively difficult for participants and that,
through practice, they can dramatically improve perfor-
mance within a few hours. We therefore adopted an aiming
task under the condition of 75° rotation of visual feedback.

We investigated generalization in visuomotor learning on
the basis of our predictions for different representations
while using two different constraints and measurements. In
Experiment 1, the task for the participant was to acquire the
target as rapidly as possible. We measured the performance
time (PT) from the onset of the start signal to the time when
the cursor arrived at the target as an indicator of the learning
effect. There were no other time constraints on the partici-
pants’ performance except the instruction to acquire the
target as rapidly as possible. Under these conditions, there
were two phases in aiming performance: ballistic and cor-
rective.! In Experiment 2, the task was to acquire the target
within a short time interval (600 ms) after the start signal (a
tone cue). In this case, the ballistic phase was more prom-
inent than the corrective phase. We measured the distance
between the target and the end position of the ballistic
movement as an indicator of the learning effect.

In both experiments, we adopted the pretest—posttest par-
adigm to assess the generalization. Each experiment con-
sisted of three sessions. The first session was the pretest, in
which test targets appeared in various locations. In the
second (training) session, the targets appeared in the re-
stricted small region. The third session was the posttest, in
which the test targets appeared in the same manner as the
pretest. We compared the participants’ performance in the
pretest with that in the posttest to investigate the generali-
zation of the training effect.

Experiment 1
Method
Participants
The participants were S right-handed undergraduate students
from Nara Women’s University or Doshisha University. They

were naive as to the purpose of this experiment and were paid for
their participation.
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Apparatus and Stimuli

For both Experiments 1 and 2, the aiming task used a 33-in
(83.82-cm) CRT monitor and a position measurement system
(Northern Digital Optotrak) connected to a personal computer
(Toshiba J3100). Figure 2A illustrates the arrangement of the
apparatus. The participants were instructed to move their right
hand above the board placed horizontally in front of them. The
hand lightly touched the board during the movement so that the
movement path was always within the horizontal plane. A marker
(an infrared light-emitting diode) was attached to the top of the
participant’s hand, and its position was sampled at 100 Hz and
stored in the personal computer. An occluder was placed above the
board and the participant’s hand to avoid direct visual feedback.
The CRT’s display surface was also placed nearly horizontal in
front of the participant (in fact, slanted 15° from the horizontal
plane toward the participant so that it was easier to observe). The
room was almost completely dark.

The background color of the CRT screen was black. The start
position was always located at the center of the screen, whereas the
target position was located around the center, as described later.
The targets were white circles 5 mm in diameter. The CRT screen
displayed a movable cursor as a white circle 0.9 mm in diameter.
Under normal conditions, when the participants moved their hand
above the board, the cursor moved in the same direction as the
band movement. However, during both experiments, the position
of the cursor was constantly rotated by 75° around the center of the
CRT screen. In other words, as indicated in Figure 2B, the angular
discrepancy between the moving direction of the participant’s
hand and that of the cursor on the screen was always 75°. We
informed the participants of this before starting the experiment.
The displacement gain of this transformation was 1.0 (i.e., moving
the hand by X cm caused the cursor to move X cm on the CRT).
The delay between the movement of the hand and that of the cursor
(i.e., time for detecting the marker position and displaying it as the
cursor on the CRT) was shorter than 20 ms.

As described in the introduction, we examined spatiotemporal
characteristics of the participants’ aiming behaviors at various
target locations before and after intensive training on targets in a
specified small region. To accommodate this scheme, there were
two sets of targets: test targets (used in the pre- and posttests) and
training targets (used in the training session).

Test targets. As shown in Figure 3, the center of each test
target was located on the circumference of a circle whose center
was identical to the center of the CRT screen (i.c., the starting
position) and whose radius was 155 mm. They were placed every
45°, as shown in the left side of Figure 3. They were labeled T1,
T2, T3, and so on, as indicated in the figure.

Training targets. In principle, each participant should have
been trained on only one test target during the training session.
However, training on only one target would not have met the

! Woodworth (1899, cited in Flowers, 1975) made a distinction
between the components for voluntary movement in the aiming
task: an “initial impulse phase” and a series of “secondary adjust-
ments” made subsequently to attain the final target position. The
first component is a fast, preprogrammed “ballistic” movement
that brings the hand into the general area of the target. The second
component comprises a number of adjustments. In this latter
phase, movements are continuously monitored and adjusted ac-
cording to sensory information. The first component, the “initial
impulse phase” in Woodworth’s terminology, can be called a
“ballistic” movement and the second “current control” component
can be called a “corrective” movement (Flowers, 1975).
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Figure 2. A: Experimental setup. B: The rearrangement of vi-
sual feedback by 75° counterclockwise rotation. The thick arrow
(A) indicates the path in which the participant moved his or her
hand and the arrow (B) indicates the path of the resulting cursor
movement on the CRT display.

purposes of our experiment. More specifically, the participant
could learn the aiming task without internal models of the kine-
matic transformation by simply remembering the proprioceptive
feedback for a particular arm posture, but we wanted to investigate
the representations used in the internal models of the kinematic
transformation. Second, the values of the parameters in Equations
1 and 2 could not be determined. Because these equations include
five unknown parameters, at least five different target positions
(five pairs of input and output values) are required to determine the
parameters. Finally, although the transformation was rotational in
this experiment, it could not be distinguished from reflection on
the axis whose direction diverged 37.5° from the target direction.

To avoid these problems, the participants were trained on nine
targets in the small region around each test target in the manner
described later. These targets were named training targets. The
right side of Figure 3 illustrates the training targets around T1. The
direction of the training targets was 0°, 11.25°, or —11.25°, and the
distance from each of the test targets was 0, 5, or —5 mm. They
were labeled S1, S2, S3, and so on, as indicated in the figure. S5
was always the same as each test target.

H. IMAMIZU, Y. UNO, AND M. KAWATO

Procedure

Before the beginning of the experiment, the transformation and
the task were described to the participants using a figure identical
to Figure 2B as follows:

A movable cursor represented by a small filled circle and a
target represented by an open circle will appear on this screen.
The position of the cursor will be constantly rotated by 75°
around the center of the screen. In other words, as indicated in
this figure, the angular discrepancy between the moving di-
rection of your hand and that of the cursor on the screen will
always be 75°. The ratio of hand movement to cursor move-
ment on the screen is 1:1. The task is to move the cursor to the
target as rapidly as possible after the tone cue generated by the
computer. It may be difficult at first but you will find that the
task will become easier with practice.

Each trial consisted of the following sequence: The participant’s
hand was placed at the starting position (i.e., the center of the
board) by the experimenter. After a few seconds, the cursor ap-
peared at the starting position (i.e., the center of the CRT screen).
At the same time, the target also appeared in one of the possible
locations. The participants observed the screen for 2 s and were not
allowed to move the cursor during this period. A tone cue (click)
was then generated by the computer to signal the beginning of the
trial. The participant’s task was to acquire the target as rapidly as
possible. The trial was terminated when the cursor arrived at the
target circle and stayed within it for more than 100 ms. Another
tone cue signaled the end of the trial. At this same time, the target
and the cursor disappeared from the screen and the trial was
terminated. The time limit for arriving at the target was 8 s.

The experiment consisted of three sessions (pretest, training
session, and posttest) and lasted about 2 hr. The time interval
between sessions was shorter than 5 min. Four (T.F., X.0., HK,,
and E.S.) of the 5 participants completed the three sessions as
experimental subjects, whereas one (K.T.), as a control subject, did
not participate in the training session and rested during it. The
training direction was determined for each participant in the ex-
perimental group (T.F. = T1, X.0. = T7, HK. = T1, and E.S. =
T5) as shown in Figure 4.

@ Start
O Test Target
@ Training Target
2 ——
o e
T3 o //O/T}I
7
4o (e, OT8

~

5€ o Oxz| |’

CRT

76 NN
s O B3
&Smm
155mm T
77 O o

Figure 3. The left side of the figure shows the locations of the
start point and test targets on the CRT screen. The right side shows
the set of training targets for one of the test targets (T1).
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Figure 4. Leaming profiles of 4 participants in the experimental group. The “clock” attached to
each profile illustrates the training direction both in the hand space and on the CRT screen.

The pretest and the posttest each consisted of 56 trials and lasted
about 20 min. In each session, one of eight test targets appeared
seven times in random order. The time interval between trials was
shorter than 5 s. The size of these two sessions (56 trials) was
chosen as a compromise between two pragmatic constraints: On
the one hand, it should be brief enough to minimize learning within
these sessions; on the other hand, it should be long enough to
eliminate noise factors and to reliably assess the participant’s
performance.

The training session consisted of seven blocks of trials, and each
block consisted of 54 trials. In each block, one of nine training
targets appeared six times in random order. A 5-min rest period
was allowed between blocks. The training session lasted about 90
min.

Data Analysis

The performance time (PT) (from the onset of the start signal to
the time when the cursor arrived at the target) was measured as an
indicator of learning.? The PT consisted of the reaction time (from
the onset of the start signal to the beginning of the participant’s

2The data of the trials in which the PT exceeded 8 s (i.e., the
recording time limit of our data acquisition system) were not
included in this analysis. The maximum number of such trials for
each target was three in the case of the pretest session, whereas
there were no such trials in the case of the training and posttest
sessions for any participant.
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movement) and the movement time (from the beginning of the
participant’s movement to the time when the cursor arrived at the
target).

The positions of the marker were sampled and stored at 100 Hz.
The spatial precision of the position measurement system was 0.1
mm. The tangential velocities were computed by the fifth-order
central difference. The computation for this difference was based
on LaGrange’s interpolation polynomial and is defined as

%2784 1+ 8511~ %o
12A¢

Z; >
where z, is the ith data value, and At is the time interval between
data values (10 ms; i.e., 100 Hz in our experiments).

The statistical analysis for participants in the experimental
group was as follows: In the pretest and posttest sessions, we
calculated the mean PT for each participant and obtained differ-
ential PTs by subtracting the mean PT from the original PT so that
the mean of the differential PTs for each participant would be zero.
Next, we conducted a two-way analysis of variance (ANOVA) on
the differential PTs with the test target direction and the type of
test (i.e., pretest or posttest) as variables. The test target direction
was measured by the angular discrepancy from the training direc-
tion. The training direction was 0°. The next counterclockwise test
target direction was 45°, and the next clockwise one was —45°. On
the training session data, a two-way ANOVA was carried out with
trial blocks and positions as variables after subtracting the mean
PT from the original PTs of all training sessions for each partici-
pant. The statistical analysis for the control subject followed that of
the experimental subjects.

Results and Discussion
Learning Process During the Training Sessions

Performance time. In Figure 4, the mean PTs and stan-
dard deviations in each block of trials are plotted separately
for each of the 4 participants in the experimental group. The
main effect of trial blocks was significant, F(6, 1446) =
116.31, p < .0001. We carried out post hoc comparisons
(Tukey’s honestly significant difference [HSD] multiple
comparisons) between the trial blocks. They revealed sig-
nificant differences for the first versus all other blocks and
the last versus all other blocks except the sixth (p < .05).
These results suggest that learning occurred during the
training sessions.

Trajectories and velocity profiles. Parts A and B of
Figure S show the typical trajectories of one participant
(T.F.) in the first (Trials 1-9) and the last (Trials 370-378)
stages of the training session. In the first stage, the trajec-
tories are curved or bent at many points. This indicates that
the participant made movement corrections many times
using visual feedback. However, in the last stage of learn-
ing, the trajectories are almost linear and the recorded points
are sparser. Parts C and D of Figure 5 show the velocity
profiles of those trials. The peaks of the velocity profiles in
the last stage of learning are much higher (about three times
in the case of this participant) than those in the first stage.
The profiles in the first stage have multiple peaks of low
amplitude and long tails, whereas those in the last stage
have a single-peak, bell-shaped appearance.
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Figure 5. Typical trajectories of 1 participant (T.F.) in the first
stage of the training session (Trials 1-9) superimposed on one
graph (a). Those of the same participant in the last stage (Trials
370-378; b). Typical velocity profiles of the same participant in
the first stage of the training session (c). Those of the same
participant in the last stage (d).

It is well-known that movements tend to be performed
more smoothly and gracefully after learning and practice
(Georgopoulos, Kalaska, & Massey, 1981). According to
Morrasso (1981), smooth movements between two points
under normal conditions can be characterized by straight
hand trajectories with single-peak, bell-shaped velocity pro-
files. Several feedforward control models of movement
(e.g., Flash, 1987; Uno, Kawato, & Suzuki, 1989) have
predicted trajectories of this type. In accordance with this,
the modification of trajectories and their velocity profiles
with practice has shown that at the beginning of a training
session movement is mainly executed by feedback control,
whereas at the end of the training session it is executed by
feedforward control (i.e., ballistic movement).

Comparisons Between the Pretest and the Posttest

Performance time. In Figure 6, the mean PT is plotted as
a function of test target position separately for each partic-
ipant. The direction of the axis represents that of the target
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Figure 6. The mean performance times of the pretest and posttest sessions plotted as a function
of test target direction in a radar chart for each participant. The direction of the axis represents that

of the test target in the hand coordinates.

position in hand coordinates (not on the CRT screen). For
each participant in the experimental group, the mean PTs in
the posttest session (indicated by solid circles) are shorter
than those in the pretest session (open circles), but for the
control subject there is no consistent difference between
them.

For participants in the experimental group, the main ef-
fect of the test type (i.e., pretest or posttest) was significant,
F(1, 413) = 145.29, p < .0001; however, in the case of the
control subject, the effect was not significant, F(1, 96) =

0.28, p = .59. The interaction between the test type and the
test target direction (i.e., angular discrepancy from the train-
ing direction) was significant for the participants in the
experimental group, F(7, 413) = 3.55, p < .001, but not for
the control subject, F(7, 96) = 0.084, p = .99. These results
suggest that, in the case of the experimental group partici-
pants, an effect of learning could be identified and that the
effect differed depending on the angular discrepancy from
the training direction. We compared the mean PTs of the
pretest and posttest sessions for each angular discrepancy
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Table 1

Significance Levels of Difference Between the Mean
Performance Time of the Pretest and Posttest as a
Function of Angular Discrepancy From the Training
Direction (Tukey’s HSD Multiple Comparisons)

Angular discrepancy

—135° —90° —45° 0° 45° 90°  135° 180°
ns ns p<.01p<.00l p<00l p<.0l ns s
Note. HSD = honestly significant difference.

using Tukey’s HSD post hoc comparisons to study the
difference in the effect of learning. Table 1 shows a signif-
icant difference between the mean PT of the pretest and that
of the posttest for each angular discrepancy from the train-
ing direction. The data in the table suggest that the effect
was present in the majority of cases and that it was most
prominent when the angular discrepancy was relatively
small (i.e., when the test target was close to that used in the
training session).

Trajectories and velocity profiles. Figure 7 shows tra-
jectories and velocity profiles of one participant (T.F.) in the
pretest and posttest sessions. The trajectories are plotted in
the hand coordinates. The target used in the training session
was T3, as indicated in Part B of Figure 7.

For the pretest session (see Part A of Figure 7), the
trajectories are curved or bent at many points, and the
velocity profiles have multiple peaks of low amplitude and
long tails. These spatiotemporal characteristics of the par-
ticipant’s performance are almost the same as those in the
first stage of the training session, as shown in Parts A and
C of Figure 5. For the posttest session (see Part B of Figure
7), the trajectories become straighter and the recorded points
are sparser. These modifications in the trajectories were
most prominent when the participant aimed at the target that
had been used in the training session. The velocity profiles
developed a single-peak, bell-shaped appearance; the peaks
of the velocity profiles were much higher than those in the
pretest. These modifications in the velocity profiles were
observed not only for the target used in the training session,
but also for all other targets.

Maximum velocity. We further analyzed the spatiotem-
poral data by using the maximum velocity as an indicator of
the learning effect. As one can observe from the velocity
profiles in Figures 5 and 7, the maximum value is the peak
of the first ballistic movement in almost every case. If the
total trajectory lengths were constant, it could be assumed
that if maximum velocity values went higher, the distance
traveled during the ballistic phase would become longer,
and the distance during the corrective phase would become
shorter. As shown in Figure 5, the peaks of the velocity
profiles in the last stage of learning were much higher than
those in the first stage, indicating that the strategy of motor
control became more and more feedforward. Therefore, the
maximum velocity reflects how dominant the feedforward
control of movement (i.c., ballistic movement) is in one trial
of the aiming task.

H. IMAMIZU, Y. UNO, AND M. KAWATO

As shown in Figure 7, the peaks of the velocity profiles in
the posttest were higher than those in the pretest for the
untrained directions as well as for the trained direction. We
compared the peaks of the velocity profiles in the pretest
with those in the posttest for all participants in the experi-
mental group and directions. In Figure 8, the mean maxi-
mum velocity is plotted as a function of the test target
direction. The maximum velocity of the posttest was higher
than that of the pretest. Furthermore, the difference in mean
maximum velocity between the post- and pretests was al-
most the same for all directions, independent of the training
direction. We carried out a two-way ANOVA with the test
target direction and type of test (pre- or posttest) as vari-
ables and subjects as an additional variable. The main
effects of the target direction, F(7, 413) = 700.25, p <
0001, and type of test, F(1, 413) = 3.89, p < .0005, were
significant. However, the interaction between them was not,
F(7, 413) = 1.43, p = .193. The values of maximum ve-
locity in the posttest were higher than those in the pretest.

On the basis of these results, one can suppose that the
movement for all directions was implemented much more
effectively by feedforward control independent of the train-
ing direction in the posttest. However, it is unknown
whether the accuracy of the feedforward control increased.
Thus, in Experiment 2, we modified the aiming task so as to
make the first ballistic movement become dominant and to
study the accuracy of the feedforward control more directly.

There was another reason for modifying the aiming task.
As shown in Part C of Figure 5, the trajectories may be
curved or bent at many points in the first stage of learning.
This suggests that many directions of movement are con-
tained in one trajectory. We expected the direction of move-
ment to be fixed during the training session, but we could
not reject the possibility of a participant experiencing var-
lous directions of movement, especially in the first stage of
training. Therefore, we needed some constraints on the task
to make the trajectories straight.

Experiment 2
Method

Farticipants

The participants were 4 right-handed undergraduate students of
Doshisha University. None of the participants participated in Ex-
periment 1. They were naive about the purpose of the study and
were paid for their participation.

Apparatus and Stimuli

The same equipment used in Experiment 1 was used in Exper-
iment 2.

Design and Procedure

The design followed that of Experiment 1, but the procedure of
each trial and the instructions to the participants were modified.
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Figure 7. Typical trajectories and velocity profiles of 1 participant (T.F.) in the pretest session
superimposed on one graph (a). Those of the same participant in the posttest session (b).

After describing the transformation in the same manner as Exper-
iment 1, the experimenter instructed the participants as follows:

After hearing the first tone cue generated by the computer,
please move the cursor as close to the target as possible. Your
time limit is 600 ms. At the end of this limit the computer will

generate the second cue. You must freeze your movement
after it.

Before the beginning of the experiment, the participants were
allowed 16 trials for practice. The experimenter instructed them to
remember the time interval of 600 ms during this practice period.
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Figure 8. The mean maximum velocities of the pretest and posttest sessions plotted as a function
of test target direction in the same manner as Figure 6.

The procedure before the first tone cue that signaled the beginning
of the trial was the same as that of Experiment 1.

The pretest and the posttest each consisted of 112 trials (8 test
targets X 14 times) and lasted about 20 min. The second training
session consisted of 10 blocks of 54 trials (9 training targets X 6
times) and lasted about 150 min. A 5-min rest period followed
every two blocks. Three (M.O., T.S., and S.1.) of the 4 participants
completed the three sessions as experimental subjects. One control
subject (J.H.) did not participate in the training session and rested
during it. The training direction was determined for each experi-
mental subject (M.O. = T3, T.S. = T5, and S.I. = T7) as shown
in Figure 9.

Data Analysis

The data analysis followed that used in Experiment 1, except
that we used the distance between the target and the end point of
the ballistic movement, instead of the PT, as an indicator of the
learning effect. We detected the end point of the first ballistic
movement using the curvature methods developed by Pollick and

Ishimura (1995) and calculated the distance between the target and
this point.

Figure 10 illustrates how the end position of the first ballistic
movement was determined. We defined the end point of the
ballistic movement as the point at which the movement was
corrected for the first time. At that point, the tangential velocity is
close to zero and the curvature drastically increases. Parts A and B
of Figure 9 show typical trajectories in one trial. We calculated the
curvature (C) at each point in the trajectory using the following
equation:

c-—22_ @)

(x 2 + y 2)3/2

where x and y are instantaneous velocities of the x- and y-coordi-
nates of the hand in the plane and x and y are the corresponding
accelerations at that point. In Part C of Figure 9, the curvature is
plotted as a function of time from the onset of the first cue
signaling the beginning of the trial. We defined the end point of the
first ballistic movement as the point at which the curvature ex-
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Figure 9. Learning profiles of 3 participants in the experimental group. The “clock” attached to
each profile illustrates the training direction in both the hand space and on the CRT screen.

ceeded 0.5 mm ! for the first time after the velocity was maxi-
mum (indicated by a square in Part C of Figure 9). The threshold
value of 0.5 mm™' was chosen during our pilot study as a com-
promise between two constraints: On the one hand, it should
exceed the noise in the data; on the other hand, it should be small
enough to detect the end of the ballistic movement reliably. At that
point, the tangential velocity is almost at the local minimum, as
shown in Part D of Figure 9. We calculated the distance between
the center of the target and that point (D), as illustrated in Part A
of Figure 9. We used the D values as an indicator of the effect of
learning.

Another method for detecting the end point of the first ballistic
movement is to find the first local minimum of the tangential
velocity. However, we did not use this method because the cur-

vature defined by Equation 4 changes more drastically than the
tangential velocity at the point at which the corrective movement
started (compare Parts C with D in Figure 9). If the feedforward
trajectory is generated on the basis of the minimum torque-change
principle (Uno et al., 1989), the curvature is close to zero during
the movement, but it becomes infinitely large at the beginning and
the end of the movement. The end point of the ballistic movement
can be reliably estimated by detecting the point at which the
curvature drastically increases.

The statistical analysis also followed that of Experiment 1,
except for the treatment of outliers. The Ds that exceeded mean *
2 SDs (i.e., 95% confidence intervals of the D means) in the pretest
and posttest were excluded from the statistical analysis as outliers.
The maximum number of such Ds for each target was 7 out of 112
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Figure 10. Typical trajectories in Experiment 2 showing the
whole trajectory (b) and the part of it near the target (a). Curvature
of the trajectory is calculated by Equation 4 (see text) and tangen-
tial velocity profiles plotted against time from the start signal (c
and d). The end point of the trajectory is indicated by a solid circle,
and the end point of the first ballistic movement detected by the
method described in the text is indicated by a square.

in the pretest session and 6 out of 112 in the posttest session for all
participants.

Results and Discussion

Learning Process During the Training Sessions

Distance between the target and the end point of the
ballistic movement (D). In Figure 10, the mean and stan-
dard deviation of D in each block of trials are plotted
separately for each of the 3 participants in the experimental
group. Both the mean and standard deviation decreased with
increasing number of trial blocks. The main effect of the
trial block was significant, (6, 1,528) = 42.35, p < .0001.
We carried out post hoc comparisons (Tukey’s HSD mul-
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tiple comparisons) between trial blocks. They revealed sig-
nificant differences for the first versus all the other blocks,
the last versus the first block, and the last versus the second
block, confirming that learning occurred during the training
sessions.

Trajectories and velocity profiles. Parts A and B of
Figure 11 show the typical trajectories of one participant
(M.O.) in the first (Trials 1-9) and last (Trials 531-540)
stages of the training session. Parts C and D of Figure 11
show the velocity profiles of these trials. The end points of
these trajectories correspond to the end of the ballistic
movements detected by the method described earlier.
Therefore, no trajectories after the end of the ballistic move-
ments are shown in these figures. The instantaneous tan-
gential velocity at the end of the first ballistic movement is
marked by a circle in Parts C and D of Figure 11. In the first
and last stages, the trajectories were almost straight. How-
ever, the end points of the trajectories were distributed over
a wide region in the first stage and were concentrated within
the area where the training targets were located in the last
stage. The velocity profiles in both the first stage and the
last stage had a single-peak, bell-shaped appearance. How-
ever, they deviated from each other in the first stage but
overlapped in the last stage. The deviation in the values of
maximum velocity and the latency at the end of the ballistic
movements decreased after training. These results suggest
that the accuracy and stability of feedforward motor control
increased at the end of the training session.

Comparisons Between the Pretest and the Posttest

Distribution of the end points of ballistic movements and
velocity profiles. Parts A and B of Figure 12 show the
typical distributions of end points of the first ballistic move-
ments and velocity profiles of one participant (M.O.). The
trajectories were omitted in Parts A and B of Figure 12
because they were nearly straight, as shown in Parts A and
B of Figure 11, for all directions of the test targets. The end
points were sparsely distributed over a wide region and
often undershot the test targets in the pretest. However, they
concentrated around each test target, and the tendency of the
undershooting disappeared in the posttest. The velocity pro-
files in both the pretest and posttest had a single-peak,
bell-shaped appearance. However, they deviated from each
other in the pretest and overlapped in the posttest indepen-
dent of the training direction. These results suggest that
feedforward control became more accurate and stable in the
posttest.

Distance between the target and the end point of the
ballistic movement (D). In Figure 13, the mean D is plot-
ted as a function of the test target direction in the same
manner as in Figure 6. For participants in the experimental
group, the mean and standard deviation of D varied with the
test target direction in the pretest session, but they are
constant in the posttest session. Furthermore, most of the
mean D values in the posttest session (indicated by solid
circles and solid lines) were shorter than those in the pretest
session (open circles and dashed lines). The control subject,
however, showed no consistent difference between the pre-
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Figure 11. Typical trajectories of 1 participant (M.O.) in the first stage of the training session

(Trials 1-9) superimposed on one graph (a). Those of the same participant in the last stage (Trials
531-540; b). Typical velocity profiles of the same participant in the first stage of the training session
(c). The instantaneous velocity at the end of the first ballistic movement is marked by (circle a).
Those of the same participant in the last stage (d).

test and the posttest. For the experimental subjects, the main
effect of the test type (i.e., pretest or posttest) was signifi-
cant, F(1, 626) = 129.07, p < .0001. However, for the
control subject, the effect was not significant, F(1, 206) =
0.17, p = .68.

There was one exceptional case among the data men-
tioned earlier. M.O.’s mean D for T1 in the posttest was
much larger than that in the pretest. The reason can be found
in Part B of Figure 12. The end points of the ballistic

movements aiming at T1 are indicated by an X in the figure.
These end points shifted constantly toward T8 (i.e., in the
counterclockwise direction). The mean directional error of
these movements was 22.65°. The constant error must have
caused the extra value of the mean D for T1 in the posttest.
Such a phenomenon was not observed for the other partic-
ipants.

The interaction between test type and angular discrepancy
from the training direction was marginally significant for
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Figure 12. Typical positions of the end points of the first ballistic movements and velocity
profiles of 1 participant (M.0.) in the pretest session superimposed on one graph (a). Those of the
same participant in the posttest session (b). The end points of the ballistic movements in the posttest
aimed at T1 are indicated by an X.

participants in the experimental group, F(7, 645) = 1.99, sons. Table 2 shows whether the difference between mean
p < .06. We compared the mean Ds of the pretest and  Ds was significant in the pretest and posttest for each
posttest sessions for each angular discrepancy from the angular discrepancy from the training direction. The data in
training direction using Tukey’s HSD post hoc compari- the table suggest that the effect of learning could be iden-
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Figure 13. The mean distances of the pretest and posttest ses-
sions plotted as a function of test target direction in the same
manner as in Figure 6.

tified in the majority of directions (5 of 8 at the .05 level or
below).

We removed those Ds corresponding to end points, indi-
cated by an X in Figure 12, when M.O. aimed at T1 (angular
discrepancy from the training target = —90°) and carried
out multiple comparisons on the residual Ds. The results are
shown in parentheses in Table 2. The difference between the
mean Ds in the pretest and the posttest for —90° was
significant at the .001 level.

Consequently, the effect of learning was identified in

Table 2
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various directions beyond the training direction. Further-
more, the effect was different among the angular discrep-
ancies from the training direction.

General Discussion

We investigated generalization in visuomotor learning
under kinematically transformed conditions to study the
type of representation used by an internal kinematics model.
In Experiment 1, there were no time constraints on the
participant’s performance except the instruction to acquire
the target as rapidly as possible. Two phases were observed
in the aiming performance: ballistic and corrective. In Ex-
periment 2, the task and measurement were modified to
investigate the accuracy of the ballistic movement. The
accuracy and stability of feedforward control increased as
the learning proceeded.

The results of Experiments 1 and 2 were similar in two
respects: (a) The effect of learning could be identified in
various directions other than the training direction and (b)
the degree of the effect was different among the angular
discrepancies from the training direction. The first point
suggests that the generalization is global rather than local
and that the representation the human motor system uses is
not tabular. However, the second point suggests that the
generalization is not as global as that predicted by structured
representation. Thus, the generalization observed in our
experiments was “intermediate,” and it is impossible to
classify the representation of the internal model as either of
the two extreme types.

Extended Versions of Tabular and Structured
Representations to Explain the Intermediate
Generalization

Our findings suggest that the CNS is unlikely to use
extreme types of the tabular and structured representations
as an internal kinematics model. However, some extended
types of the tabular or structured representation might have
an intermediate generalization capacity. We now examine
extended versions of these two extreme concepts.

First, participants might have used a sophisticated tabular
representation rather than a simple one. The specific exem-

Significance Levels of Difference Between the Mean D of the Pretest and Posttest as a
Function of Angular Discrepancy From the Training Direction (Tukey’s HSD Multiple

Comparisons)
Angular discrepancy
-135° —90° —45° 45° 90° 135° 180°
p < .05 ns p < .05 p < .001 p<.01 p < .05 ns ns
(r < .001)*
Note. HSD = honestly significant difference.

2 This level of significance was obtained after removing Ds corresponding to end points when
participant M.O. aimed at T1; multiple comparisons were carried out on residual Ds.
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Figure 14. Vectors representing the displacement from the position of the target presented on the
CRT screen to the end point of the first ballistic movement in the posttest of Experiment 2. The
training direction for each of the participants is indicated by an asterisk. Sub. = Subject.

plar model, to which we referred in the introduction, is an
example of such a representation. It stores specific exem-
plary pairs of input and output signals in memory and is a
tabular representation in this respect. However, it has an
intermediate generalization capacity because of the follow-
ing operations: When it encounters a novel input signal, it
calculates distances between the novel input signal and the
stored exemplar signals in memory and finds some close
exemplars. It then determines the output value by averaging
the output values of these exemplars. It is important for the
generalization properties of this representation to be char-
acterized as follows: The effect of learning is most promi-
nent when the input signal is close to that used during the
training period, and the effect decreases monotonically as
the input signal goes farther away from the training target
(i.e., “graded response”). Computational models called
memory-based representations (e.g., radial basis function
[RBF; Poggio & Girosi, 1990] and K-means neural net-
works [Duda & Hart, 1973]) would produce results similar
to this model’s concerning the generalization properties.

Second, the respondents might have induced an improper
structure or improper values of kinematic parameters in the
structured representations. As we discussed in the Method
section of Experiment 1, the participants were told about the
75° transformation of visual feedback around the center of
the screen and about the 1:1 ratio of hand movement to
cursor movement. However, there is no assurance that the
participants represented the structure of the transformation
(i.e., rotation around the center of the screen) properly. If
the representation contained translation and magnification
in addition to the rotation, then the participants’ perfor-
mance in the posttest would have been well suited for some
particular target directions but not so for the other direc-
tions. Furthermore, they might have induced improper val-
ues of the parameters suited only for some particular target
directions. It might have been difficult to acquire proper
values through training because the training targets were
restricted to the extremely small region as indicated in
Figure 3. In these cases, intermediate generalization was
observed.
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and the pre- and posttests. MO, SI, and TS represent the principals.

Examinations of the Extended Versions of the
Tabular and Structured Representations

We closely examined whether these extended versions
could explain the results of our experiments. We first dis-
cuss the sophisticated tabular representation. We investi-
gated whether a graded response would be evident in the
participants’ performance. Figure 14 shows vectors repre-
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senting the displacement from the position of the target
presented on the CRT screen to the end point of the first
ballistic movement in the posttest of Experiment 2. These
vectors directly indicate the transformation performed by
the participants. We measured the magnitude of the vectors

(JAX]) and the angles of rotation (A6). The top of Figure 15
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Table 3

Estimated Parameter Values by the Steepest Descent Method

Model 2

Model 1

Model 3

b,:
Translation in

18

a: b
Rotation Translation in

b,:
Translation in

1

b
Translation in

a.
Rotation

q2
—3.01
-0.96
—2.15

P3 Ps 91

—-1.00 0.15

P2

P

Magnification

x-axis (mm) y-axis (mm)

angle
~-78.89°
—68.65°

—75.34°
P1s P2» P3, and p, indicate parameters of linear transformation in Model 3. g, and ¢, indicate parameters of translation in Model 3.

x-axis (mm) y-axis (mm)

angle
—78.89°
—68.65°
—75.34°

Participant

0.98
—0.20

020 086
032 0.83

022 091

0.95
0.91
0.95

—0.49
—0.08
—1.36

-3.07
—0.86
—2.28

-0.51

—2.96
—0.87
—2.22

M.O.

—0.86 034

-0.02
—1.34

S.L
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1.16

—093 025

TS.

Note.

1llustrates the definitions of ]E{’I and A6, and the other parts

show ]AX | and A8 for each of the participants in the pre- and
posttests. If the participant correctly performed the task and

precisely acquired the target, IAXI and A6 became 188.7 mm
and 75°, respectively (these Values are indicated by broken

horizontal lines in Figure 15). |AX] and A6 varied with the
target direction in the pretest session, but they were consis-
tently near the correct values in the posttest session for all
participants in the experimental group.

We did not observe that the effect of learning was most
prominent when the target was close to that used during the
training period or that the effect monotonically decreased as
it went farther away from the training target. Note that the
difference between the value in the pretest and that in the
posttest was almost constant for all targets in the case of 1
participant (S.1.). Such a uniform generalization property is
apparently different from that of the sophisticated tabular
representation. Thus, the memory-based representation,
even in its sophisticated version, cannot explain the results.

Regarding the structured representation with an improper
structure and with improper values of kinematic parameters,
we tested three models corresponding to the kinematic
transformation; they had different structures from each
other. Two of them were based on the structure of the task
used in Experiment 2, whereas the other was not. The first
model had parameters representing the rotation angle (a)
and the translation distances in the x- and y-axes (b,, b,).
The mathematical formula of this model is represented by
Equation 1. The second model had a parameter representing
magnification (A) in addition to those of the first model. Its
mathematical formula is

(x) ( oS a sin a>*1<X—b1)

=A - . (5)
y —sina cosa Y—b,

The first model had a structure suited for the task in the
experiment, whereas the second did not because the task
required a rotational transformation without any magnifica-
tion. We can call both models structured models because
each of the parameters has a simple kinematic meaning (i.e.,
rotation, translation, or magnification). We could introduce
another mathematical model when considering general lin-
ear transformation. If we had introduced a nonlinear model
with many parameters, it might have represented the exper-
imental results as a matter of course. Thus, we investigated
how well a simple linear model given by

bGab G e
y p3paj\Y 92
could explain the results. However, this model is not a
structured model according to the definition to which we
referred in the introduction because we could not find
simple kinematic meanings for the parameters (p,, p,, P,
and p,).

We investigated whether each of the models could ex-

plain the results of Experiment 2 in the following proce-
dures. First, we estimated the parameter values of each
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Figure 16. The correlation between the observed error distances in Experiment 2 and those
predicted by each of the models. The distances were separately plotted for the x (solid circle) and
y (open circles) directions. r = Pearson’s correlation coefficient; AIC = Akaike’s information

criterion (Akaike, 1974). * p < .05. **p < .0L.

model using the target positions on the screen (i.e., origins
of the vectors shown in Figure 14) as input signals and the
end points of the first ballistic movements (i.e., terminal
points of the aforementioned vectors) in the posttest as
output signals according to the steepest descent method
(e.g., Bryson & Ho, 1975; see Appendix A). Second, we
transformed the target position using each model and esti-
mated parameter values and got the positions of the end
points predicted by the models. Finally, we evaluated these
models by investigating the correlation between the distance
errors (i.e., distances between the target position and the end
points) predicted by each model and those observed in the
results of Experiment 2.

*x% p < 001,

Table 3 shows the values of parameters estimated by the
steepest descent method for each of the models. We calcu-
lated (a) the distances in the x and y directions between the
target and the end points predicted by each model with the
estimated parameter values and (b) those between the target
and the observed end points that were averaged for each of
the targets. Figure 16 shows the correlation between the
distances for each model. Pearson’s correlation coefficients
exhibited the largest values and were significant in the third
model for all respondents (ps < .01, .001, and .05 for
participants M.O., S.I, and T.S., respectively). Thus, the
third model seems to be the best for explaining the results of
Experiment 2.
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Pre-test
——&— Post-test

O

— O

Training Direction

Figure 17. The distances of the pretest and posttest sessions in the stimulation data plotted as a
function of training direction in the same manner as in Figure 6.

However, we had to take a number of parameters in-
cluded in the three models into account before drawing a
conclusion because a mathematical model can generally fit
better given data as the number of parameters increases. The
third model has six parameters, and the first and the second
have three and four parameters, respectively. We calculated
Akaike’s information criterion (AIC; Akaike, 1974; see
Appendix B) to evaluate the models taking these numbers of
parameters into account. The results are also shown in
Figure 16. The AIC value of the third model was the least
for all of the participants (the model became better as the
AIC value decreased). Thus, the third model was the best of

the three. Furthermore, note that a matrix of the first four
parameters (p;, p», P3, and p,) in the third model did not
correspond to any rotational matrices (see Table 3, Model
3). For example, in the case of M.O., p, is 0.20 and corre-
sponds to cos(78.21°), whereas p, is 0.86 and corresponds
to sin(59.03°). In this manner, the rotational angles given
by the parameters in the same matrix are different from
each other. We also could not find any simple physical
meanings of these parameters for the other participants.
These results suggest that structured representations, even
in extended forms, cannot sufficiently explain the results of
Experiment 2.
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—e— Mean

—o— Standard Deviation

-90-45 0 45 90 135180 -135-90 -45 0 45 90 135180

Differential PT (ms)
Differential D (mm)

400 t

Angular discrepancy
from the training direction (deg.)

Angular discrepancy
from the training direction (deg.)

Figure 18. The mean and standard deviation of the differential
performance times (PTs) in Experiment 1 (2) and distances (Ds) in
Experiment 2 (b) in the posttest sessions, plotted as a function of
angular discrepancy from the training direction.

Generalization Properties of Connectionist
Representation

A promising candidate to explain the intermediate gener-
alization observed in our experiments is the learning in
multiple-layer perceptrons. It can approximate any contin-
uous function, including a linear one, by increasing the
number of hidden units (Funahashi, 1989). Some theoretical
approaches have discussed generalization properties of a
neural network. Baum and Haussler (1989), for example,
addressed the relation between the size of a neural network
and its generalization ability. Poggio and Girosi (1990)
pointed out that learning an input—output mapping from a
set of examples in neural networks is closely related to
classical approximation techniques; the networks are not
only equivalent to generalized splines but are also closely
related to the classical radial basis functions used for inter-
polation tasks.

As we mentioned before, the kinematic parameters are
implicitly represented by a considerable number of synaptic
weights in this approach. The number of parameters varies
according to the number of hidden units in the network.
Geman, Bienenstock, and Doursat (1992) pointed out that
the mean-squared error of a network can be decomposed
into a bias term and a variance term. If the number of
parameters is too small, the performance of the network
degrades because the bias increases; the bias can be reduced
by increasing the number of parameters. A large number of
parameters, however, causes a high variance, and large
training samples are required to reduce the variance and to
achieve an acceptable performance. They called this trade-
off the “bias/variance dilemma.”

Consequently, when the training data are restricted to
particular sets of samples, as in our experiments, the bias for
the training data can be reduced by increasing the number of
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parameters, but the variance cannot. Thus, in the case of a
large number of parameters, there is no assurance that the
network can correctly estimate a broad range of input—
output mappings beyond the training region because the
output values might be too sensitive to the location of the
training points. In fact, our results show that the generali-
zation in visuomotor learning is not perfect. For example, in
Experiment 2, the learning effect was not present for some
directions for 2 participants (M.O. and T.S.; see Figure 13).

Furthermore, it depends on the initial conditions of hid-
den units how a multilayer perceptron trained using small
samples estimates input—output mappings beyond the train-
ing region. There is no assurance that the error of the
network monotonically decreases as the input signal be-
comes similar to that used in the training. Note that the
effect of learning did not monotonically decrease as the
angular discrepancy from the training direction increased.
Thus, the generalization properties observed in the results of
Experiment 2 resemble those from “extrapolation™ by a
neural network trained using small samples.

Recently, we examined the generalization properties in
the learning of three-layer perceptrons by computer simu-
lation (Imamizu, Uno, & Kawato, 1993). The purpose of
this simulation was not to examine whether this represen-
tation could explain the results of Experiment 2 better than
the representations we previously examined using the steep-
est descent method, but to investigate whether it could
qualitatively reproduce the results after learning the same
transformation that the human participants had learned.

We briefly describe the procedure of the simulation. The
input signals for the network were the target positions on the
screen, and the output signals corresponded to the end
points of the first ballistic movements. First, the network
learned the identity map from the screen to the hand coor-
dinates before learning the rotation. Second, its performance
was tested at the eight global targets used in Experiments 1
and 2. Third, it learned the function given by Equation 1 by
using the nine local target positions in the hand coordinates
as the teaching signals. These target positions were also
used in Experiments 1 and 2. Finally, its performance was
retested using the eight global target positions. In the third
step and final step, random noises were added to the input
and teaching signals to imitate the variability found in
performance of human participants. Their minimum and
maximum values were —5 and 5 cm, respectively.

Figure 17 shows the results of the simulation. They are
similar to the results of Experiment 2 in two respects: (a)

3 In this research, we focused on how participants “extrapolate”
the relation between the stimuli and response of the practice pairs.
However, the function forms of generalization might be under-
stood much more clearly by studying the “interpolation” between
the practice targets. For example, Bedford (1989) asked his re-
spondents to learn to point at visual targets while wearing prism
goggles that distorted the targets’ perceived spatial positions. He
studied how the respondents interpolated in pointing at new trans-
fer targets and obtained some evidence for the primacy of linear
functions during the induction of continuous stimulus-response
relations.
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The effect of learning could be identified in various direc-
tions other than the training direction and (b) the degree of
the effect was different among the angular discrepancies
from the training direction.

Differences Between Experiments 1 and 2

The results of Experiments 1 and 2 were similar in the
two points discussed earlier, but they were different in that
the learning effect in Experiment 1 was most prominent
when the test target was close to the training direction,
whereas this tendency was not as prominent in Experiment
2. Additionally, the range of generalization in Experiment 2
seemed to be wider than that in Experiment 1.

The difference in these results became more prominent
when we studied the PTs of Experiment 1 and the Ds of
Experiment 2 in the posttest. We calculated the mean and
standard deviation of differential PTs and Ds for each
participant in the experimental group in the posttest session
(the differential method is described in Experiment 1). In
Parts A and B of Figure 18, the differential PTs and Ds in
the posttest are plotted as a function of angular discrepancy
from the training direction. All of the mean values are
negative because the normalized zero corresponds to the
mean PT or D of the pretest and posttest for each respon-
dent. In Experiment 1 (see Part A of Figure 18), the mean
and standard deviation of the PTs in the posttest decreased
from —135° to the training direction (0°) and continuously
increased from the training direction to 180°. In Experiment
2 (see Part B of Figure 18), the mean and standard deviation
of D at —90° were extraordinarily large. However, if we
remove the Ds of participant M.O. for —90° for the reason
mentioned earlier, the Ds become relatively constant and
small compared with the results of Experiment 1 (indicated
by the dashed lines). Consequently, although the effect of
learning was identified in various directions beyond the
training direction, the generalization was relatively local in
Experiment 1 and global in Experiment 2.

It might not be appropriate to directly compare the results
of Experiment 1 with those of Experiment 2 because dif-
ferent measures were used. However, if there were a differ-
ent effect of generalization between Experiments 1 and 2,
there are two possible explanations.

First, there was a procedural difference between these two
experiments, that is, whether corrective movement (feed-
back control) was used. In Experiment 1, the analysis of
velocity profiles (see Figures 5 and 7) suggested that the
early part of the movement was executed by feedforward
control, whereas the latter part was executed by feedback
control. On the other hand, in Experiment 2, the analysis
(see Figures 11 and 12) suggested that almost the entire
movement was executed by feedforward control. Thus, one
can assume that the different posttest results in Experiments
1 and 2 were due to the different effect of learning in the
feedforward control and feedback control. On the basis of
these resuits, we guess that the range of generalization in the
feedforward control was wider than that in the feedback
control.
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Second, the relatively local generalization observed in
Experiment 1 might have arisen because the velocity of
movement during the posttest was much higher than that in
the pretest (see Figures 7 and 8). In this research, we
restricted our attention to the internal models of kinematic
transformations; however, there is no assurance that the
models of the motor apparatus are built separately for ki-
nematics and dynamics. If the CNS has one model capable
of solving kinematics and dynamics simultaneously, the
performance of the participants might depend on both the
direction of the target and the velocity. In Experiment 1, the
participants learned to aim at targets in a specific direction
at high speed during the training session, but they might not
have learned how to aim at targets in other directions at that
speed. On the other hand, in Experiment 2, the PT was
constant (600 ms), and the velocity in the posttest was
almost compatible with that in the pretest.

In conclusion, the type of representation used in an inter-
nal kinematic model is nontabular and nonstructured. That
is, it is unlikely that the CNS builds the internal model by
either directly representing the kinematic parameters or
representing the local association between sensory input and
motor output. Instead, a promising candidate to explain the
results of experiments is a neural network model with a
medium number of neurons.

However, the computational characteristics of the con-
nectionist representation that could reproduce the results of
our experiments might resemble those of the structured
representation. This is because, in this research, the struc-
tured model whose parameters were rotation angles, trans-
lation distances, and magnification could explain the results
to some extent (but not sufficiently). We can find the reason
for this in the task instruction of our experiments; the
experimenter informed the participants of the nature of the
transformation (i.e., 75° rotation) between the hand and the
screen coordinates before the beginning of the experiments.
One of our future goals is to investigate how such cognitive
knowledge of the task affects the organization of connec-
tionist representations.

References

Akaike, H. (1974). A new look at the statistical model identifica-
tion. IEEE Transactions on Automatic Control, AC-19, 716—
723.

Albus, I. S. (1975). A new approach to manipulator control: The
cerebellar model articulation controller (CMAC). Journal of
Dynamic Systems, Measurement, and Control, 97, 220-227.

An, C.H,, Atkeson, C. G., & Hollerbach, J. M. (1988). Model-
based control of a robot manipulator. Cambridge, MA: MIT
Press.

Atkeson, C. G. (1989). Learning arm kinematics and dynamics.
Annual Review of Neuroscience, 12, 157-183.

Baum, E. B., & Haussler, D. (1989). What size net gives valid
generalization? Neural Computation, 1, 151-160.

Bedford, F. L. (1989). Constraints of learning new mappings be-
tween perceptual dimensions. Journal of Experimental Psychol-
ogy: Human Perception and Performance, 15, 232-248.

Bryson, A. E,, Jr., & Ho, Y. (1975). Parameter optimization prob-



GENERALIZATION IN VISUOMOTOR LEARNING

lems. In A. E. Bryson & Y. Ho (Eds.), Applied optimal control
(pp. 1-41). Washington, DC: Hemisphere.

Chamberlin, C. J., & Magill, R. A. (1992). A note on schema and
exemplar approaches to motor skill representation in memory.
Journal of Motor Behavior, 24, 221-224.

Cunningham, H. (1989). Aiming error under transformed spatial
mappings suggests a structure for visual-motor mappings. Jour-
nal of Experimental Psychology: Human Perception and Per-
formance, 15, 439-506.

Duda, R.O., & Hart, P. E. (1973). Unsupervised learning and
clustering. In R. O. Duda & P. E. Hart (Eds.), Pattern classifi-
cation and scene analysis (pp. 189-260). New York: Wiley.

Flash, T. (1987). The control of hand equilibrium trajectories in
multi-joint arm movements. Biological Cybernetics, 57, 257~
274.

Flowers, K. (1975). Ballistic and corrective movements on an
aiming task: Intention tremor and Parkinsonian disorders com-
pared. Neurology, 25, 413-421.

Funahashi, K. (1989). On the approximate realization of continu-
ous mapping by neural networks. Neural Networks, 2, 183-192.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural net-
works and bias/variance dilemma. Neural Computation, 4, 1-58.

Georgopoulos, A. P., Kalaska, J. F., & Massey, J. T. (1981). Spa-
tial trajectories and reaction times of aimed movements: Effects
of practice, uncertainty and change in target location. Journal of
Neurophysiology, 46, T25-743.

Hollerbach, J. M. (1982). Computers, brains and the control of
movement. Trends in Neurosciences, 56, 189-192.

Imamizu, H., Uno, Y., & Kawato, M. (1993). Generalization of
visuo-motor learning. Society for Neuroscience Abstracts, 19,
1594,

Jordan, M. I. (1990). Motor learning and the degree of freedom
problem. In M. Jannerod (Ed.), Attention and performance XIII
(pp. 796-836). Hillsdale, NJ: Erlbaum.

Kawato, M. (1990). Computational schemes and neural network
models for formation and control of multijoint arm trajectory. In
T. Miller, R. Sutton, & P. Werbos (Eds.), Neural networks for
control (pp. 197-228). Cambridge, MA: MIT Press.

1197

Kawato, M., Furukawa, K., & Suzuki, R. (1987). A hierarchical
network model for motor control and learning of voluntary
movement. Biological Cybernetics, 57, 169-185.

Kawato, M., & Gomi, H. (1992). The cerebellum and VOR/OKR
learning models. Trends in Neurosciences, 15, 445-453.

Keele, S. W. (1981). Behavioral analysis of movement. In J. M.
Brookhart, V. B. Mountcastle, V. B. Brooks, & S.R. Geiger
(Eds.), Handbook of physiology: Section I. The nervous system
(pp. 1391-1414). Bethesda, MD: American Physiological Soci-
ety.

Koh, K., & Meyer, D. E. (1991). Function learning; Induction of
continuous stimulus-response relations. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition, 17, 811-
836.

Morasso, P. (1981). Spatial control of arm movements. Experi-
mental Brain Research, 42, 223-227.

Poggio, T., & Girosi, F. (1990). Regularization algorithms for
learning that are equivalent to multilayer networks. Science, 247,
978-982.

Pollick, F. E., & Ishimura, G. (1995). The three-dimensional curva-
ture of straight-ahead movement. Manuscript in preparation.

Rumelhart, D. E. (1986). Parallel distributed processing. Cam-
bridge, MA: MIT Press.

Saltzman, E. (1979). Levels of sensorimotor representation. Jour-
nal of Mathematical Psychology, 20, 91-163.

Saltzman, E. (1987). Skilled actions: A task-dynamic approach.
Psychological Review, 94, 84-106.

Schmidt, R. A. (1975). A schema theory of discrete motor skill
learning. Psychological Review, 82, 225-260.

Schmidt, R. A. (1988). The process of learning. In R. A. Schmidt
(Ed.), Motor control and learning (pp. 457-491). Champaign,
IL: Human Kinetics Publishers.

Shadmehr, R., & Mussa-Ivaldi, F. A. (1994). Adaptive represen-
tation of dynamics during learning of a motor task. Journal of
Neuroscience, 14, 3208-3224.

Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control
of optimal trajectory in human arm movement: Minimum
torque-change model. Biological Cybernetics, 61, 89-101.

Appendix A

Parameter Estimation Using the Steepest Descent Method

We explain how we estimated parameter values from the ex-
perimental data using the steepest descent method (e.g., Bryson &
Ho, 1975). Take the case of the first model. The number of trials
was 112 in Experiment 2, and there were 112 pairs of input (the
target positions on the screen: X and Y) and output (the end points
of the first ballistic movements: x and y) as the observed data.
According to the first model (i.e., Equation 1), the relation between
the ith input and output signals is represented by

x;= (X; — by)cosa + (Y; — by) sin a

yi= —(X;— by)sina + (¥Y; — by) cos a.

Our purpose is to find a set of parameter values (a, b,, and b,) that
best fit the observed pairs of input and output signals. This task is

equivalent to minimizing the error function E given by

112

1
E=52 [ = x)% + 6 = )3

i=1

Here x and y* are the outputs of the model for the ith input. The
best set of parameters can be obtained in an iterative manner
(described next).

We set some adequate values of parameters and calculated E for
the first time. We changed each of the parameter values so as to
decrease the value of E according to the following iteration rule:

SE oE
ak+1=ak_s.g,bllc+1:bllc_e,_k’andbgﬂ
1
SE

=b12€‘8’—k.

(Appendix A continues on next page)
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Here, a*, b} and b% are the parameter values in the kth iteration, and
& is a positive value that is small enough (from 107> to 107%) to
avoid divergence. The parameter values each converged to the best
value after 100,000 iterations.
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We also estimated the parameter values in the same manner for
the other models, although the numbers of their parameters are
different from the first.

Appendix B

Akaike’s (1974) Information Criterion

Akaike’s (1974) information criterion is a method used to eval-
uate models taking a number of parameters into account. Accord-
ing to Akaike, this criterion is defined as

AIC = —2log(f) + 2(k + 1) . (A1)

Here, L(6) is the maximum likelihood of a model F ¢ and k is the
number of parameters. Thus, the first term corresponds to the
goodness of the fit, and the second is a penalty for increasing the
number of parameters. If the input signals of the model are w,,
Wa, . .., W, the output signals are Fg(w,), Fg(w,), . . ., Fg(w,), and
the observed experimental data are z,, z,, . . ., z,, then the error of
the model for the ith input signal is given by

8 =1z, — Fo(w) .

If the errors distribute in the normal distribution whose mean and
variance are 0 and o, respectively, the model’s probability density
function p is described as

) 1 xp [Zi —F e(W,‘)]Z
ple) = [ .
\ 270 20°

Its likelihood function L(6) is represented by

1 ([l PP
L(6) = LII\/ZT(—Texp Py .

This function becomes maximum when o equals the variance of
the observed data (o). Thus,

N " 1 [z — Fo(Wi)]2
L(§) = Elﬁexp s .

By substituting this relation into Equation A1, AIC can be written
as

! _ [[Z"—F"(W")]Z} +2%k+1).

AIC = —2n10g\/-2—7; i=11 2

We used this equation to get AIC values. First, we calculated the
squared sum of the errors of the model (i.e., the numerator of the
second term). If the position of the end point of the first ballistic
movement is (x, ;) and those predicted by the model are (x, y¥),
then the calculation becomes

DG — XN+ (3 — 3.

i=1

Here, we assume that errors in the x and y directions are indepen-
dent of each other. Second, we calculated the variance of the
observed data (). Let the distance between the end point of the
first ballistic movement and the target position in the hand coor-
dinates (x7, y) be p, and so forth,

p= = =)+ i = 3D

Then, the mean and variance are represented by p and o, TESpec-
tively, and one can get both values directly from the observed data.
We now consider the variance of p in the x direction because we
have assumed that errors in the x and y directions are independent
of each other. The distance in the x direction is given by

g, = psind.

Here, ¢ is defined as arctan ([y; — y/J/[x; — x7]). Let the mean and
variance of g, be E(e,) and V(s,), respectively. Also, suppose P(p)
and Q(¢) represent distribution functions of p and ¢, respectively.
Then

—fand
Ee) = f P(p)pdp f O()sin ddd = p f " sin ¢

]

Because [3™ -~ sin ¢&do is constantly zero, E(e,) becomes zero.

Thus, o
V(e,) = E{[e, — E(e)]*} = E(&l)

and

E(e) = J P(o)o’dp f O(@)sin’ b

. 27 2

1 1-cos2¢
:Upflw . dd’

Op

_2— .

We used V(e,) as the variance of the observed data (o).
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